

ENERGY | Energy Efficiency & Renewable Energy

Techno-Economic Analysis of Biofuel Production Pathways

Alternative Aviation Fuels: Developing an Action Plan for the Southeast

Zia Haq

U.S. Department of Energy April 24, 2019

1 | Bioenergy Technologies Office eere.energy.gov

Bioenergy Technologies Office's Critical Program Areas

Production & Harvesting

Feedstock Supply & Logistics

Works to reduce the cost, improve the quality, and increase the volume of sustainable feedstocks available for delivery to a conversion process.

Advanced Algal Systems

Focuses on improving the productivity of algal biomass and enhancing the efficiency of cultivation and harvesting.

Conversion & Refining

Conversion

Develops technologies to convert non-food feedstocks into biofuels, bioproducts, and biopower.

Conducts feedstock blend testing, separations, materials compatibility evaluations, and techno-economic analyses to focus research on highest impacts.

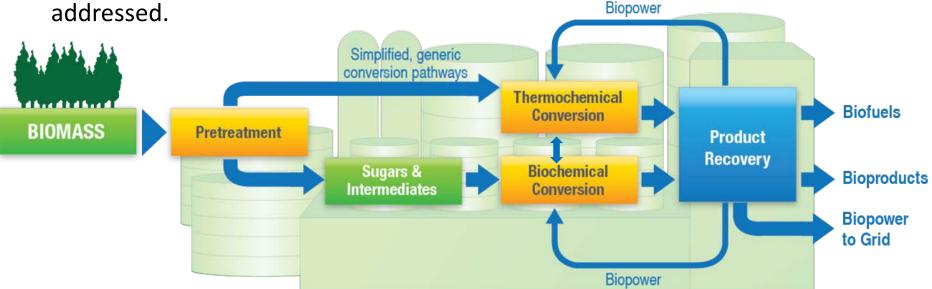
Distribution & End Use

Advanced Development and Optimization

Aims to reduce technology uncertainty in bioenergy by integrating individual technologies into a system/process and provides vital knowledge fed back to research programs.

Crosscutting

Sustainability and Strategic Analysis


Supports program decision-making and develops science-based strategies to understand and enhance the economic and environmental benefits of advanced bioenergy.

Biofuels Conversion Technologies

• DOE is focusing on advancing renewable gasoline, diesel, and jet fuels technologies, in addition to bio-products and bi-power.

Technical, construction, operational and financial/market risks need to be

Key Challenges					
Biomass	Pretreatment	Conversion	Product		
Reliable supplyConsistent qualityAffordable delivery	Biomass feeding, sizing and moistureSolids handlingMaterial of construction	 Products Yields Material of construction Catalysts Fermentation organisms	SeparationsCatalytic upgradingRecycle loops		

Fuels Market and Demand for Jet Fuels

US Liquid Fuels and Products Market Size (billion gallons/year)

	2017	2050	Growth Rate 2018 – 2050 (%/year)
Gasoline	143	109	-0.8%
Diesel	60	61	-0.1%
Liquefied Petroleum Gas ^[1]	41	61	1.0%
Other ^[2]	31	38	0.7%
Jet Fuel	26	35	0.9%
Residual fuel oil	5	4	-0.6%
Total	305	309	

^{1.} Includes ethane, natural gasoline, and refinery olefins.

^{2.} Includes kerosene, petrochemical feedstocks, lubricants, waxes, asphalt, and others commodities. Source: Energy Information Administration, "Annual Energy Outlook 2019", Reference Case, Table 11.

FY 2019 Commercial Trucks and Off-road Applications FOA

Total Federal funding: \$51.5M

Integrated, multi-fuel approach

 Natural gas, Hydrogen, Biopower, and Electrification Technologies

Topic 1B: Cost-effective Biopower Production from Municipal Solid Waste

- Low-cost biogas cleanup
- Innovative anaerobic digestion/gasification
- Lower the cost of electricity from incineration

Further information available at: http://eere-exchange.energy.gov

FY 2019 Advanced Vehicle Technologies Research FOA

Total Federal funding: \$59M

AOI 4: Predictive Modeling Capabilities for the Co-Optimization of Fuels and Multimode (SI/CI) Engines:

 Improve submodels and enhance not only the accuracy and predictive capability of multi-mode engine simulations, but also the algorithms to expedite simulation times.

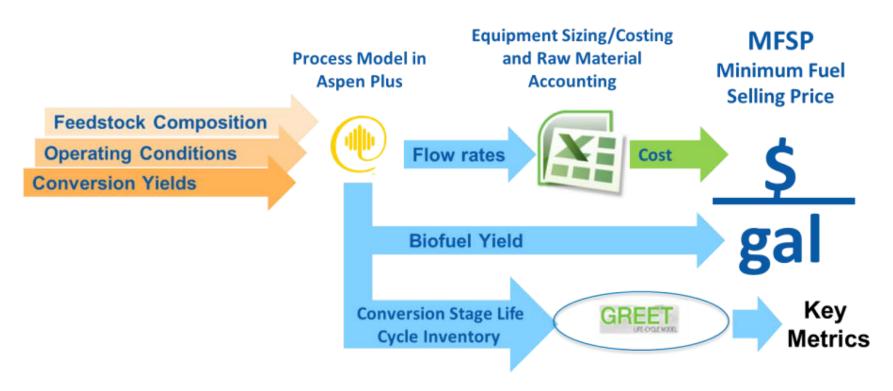
Submodels of interest:

- Direct injection sprays
- Chemical kinetics and emissions formation
- Heat transfer
- Turbulent flame development and propagation
- High-energy ignition

Further information available at: http://eere-exchange.energy.gov

NREL: Strategic Support - Public DOE BETO Biofuels TEA Database

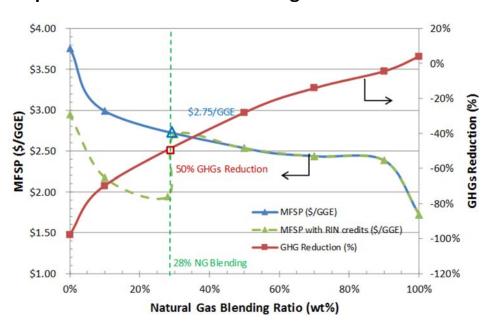
MOTIVATION: Support transparency of and ease of access to DOE BETO supported public techno-economic analysis data.

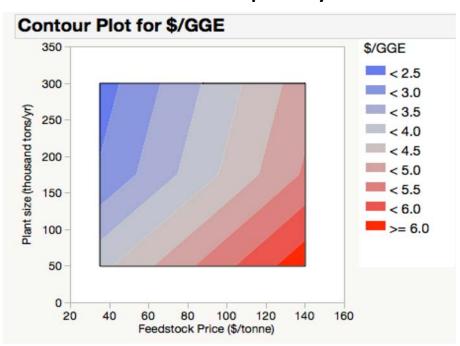

GOAL: Develop and publicly release a biofuels cost data base that summarizes key inputs utilized in conversion TEAs.

APPROACH:

- Currently contains over 40 DOE BETO funded conversion TEA studies, including design reports and publications.
- Reviewed by lead analysts to ensure consistency as well as modify format per suggestions (NREL/PNNL).
- Available for download on the Biomass KDF:
 https://bioenergykdf.net/content/beto-biofuels-tea-database
- Will be updated yearly with new BETO funded TEAs.

Strategic TEA - Approach


- Modeling is rigorous and detailed with transparent assumptions.
- Baseline assumes nth-plant equipment costs.
- Perform pioneer plant evaluations to understand the near-term cost of jet fuel production pathways.
- Quantify the underlying uncertainties through sensitivity analysis.
- Prioritize TEAs based on programmatic requests and data availability.


Strategic TEA - Results

Explored strategies to meet a \$2.50/GGE cost target for jet fuel pathways

An example for achieving \$2.50/GGE via Fischer-Tropsch as a function of natural gas to biomass ratio

An example contour map for achieving \$2.50/GGE for HEFA-SPK pathway

Not shown in figure but included in analysis is impacts of RIN credits

Key Takeaways to \$2.50/GGE study: A combination of strategies required such as: 1) low cost feedstocks (such as waste feeds – WTE strategies), 2) high process yields (conversion needs), 3) larger scales (ADO strategies), 4) coproducts (conversion strategies), 5) renewable/cheap H₂ sources (AMO) and 6) RIN/LCFS **Energy Efficiency &** credits (on-going discussions CARB). Renewable Energy